

Transportation Engineering and Planning

ATTACHMENT 4

ITE TRIP GENERATION INFORMATION

FOR

RESIDENTIAL CONDOMINIUM/TOWNHOUSE

Hajec Associates, Inc.

Land Use: 230 Residential Condominium/Townhouse

Description

Residential condominiums/townhouses are defined as owners in units that have at least one other owned unit within the same building structure. Both condominiums and townhouses are included in this land use. The studies in this land use did not identify whether the condominiums/townhouses were low-rise or high-rise. Low-rise residential condominium/townhouse (Land Use 231), high-rise residential condominium/townhouse (Land Use 232) and luxury condominium/townhouse (Land Use 233) are related land uses.

Additional Data

The number of vehicles and the number of residents had a high correlation with average weekday vehicle trip ends. The use of these variables was limited, however, because the number of vehicles and residents was often difficult to obtain or predict. The number of direction units was generally used as the independent variable of choice because it is usually read by available, easy to project and had a high correlation with average weekday vehicle trip ends.

The peak hour of the generator typically coincided with the peak hour of the adjacent street traffic.

The sites were surveyed from the mid-1970s to the 2000s throughout the Unite I States and Canada.

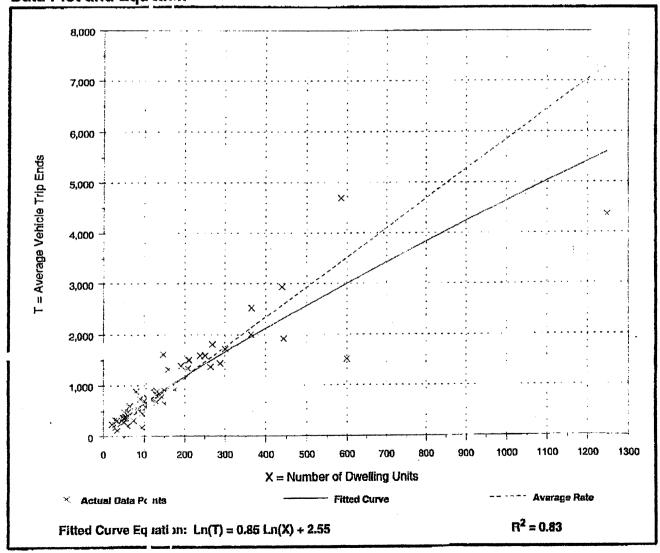
Source Numbers

4, 92, 94, 95, 97, 100, 105, 106, 114, 168, 186, 204, 237, 253, 293, 319, 323, 321, 390, 412, 418, 561, 562, 583

Residential Condominium/Townhouse (230)

Averaç e \'ehlcle Trip Ends vs: Dwelling Units
On a: Weekday

Number of Studies: 54


Avg. Number of Dwelling Units: 183

Cirectional Distribution: 50% entering, 50% exiting

Trip Generation pr r I welling Unit

Average Ra e	Range of Rates	Standard Deviation	
5.86	1.83 - 11.79	3.09	

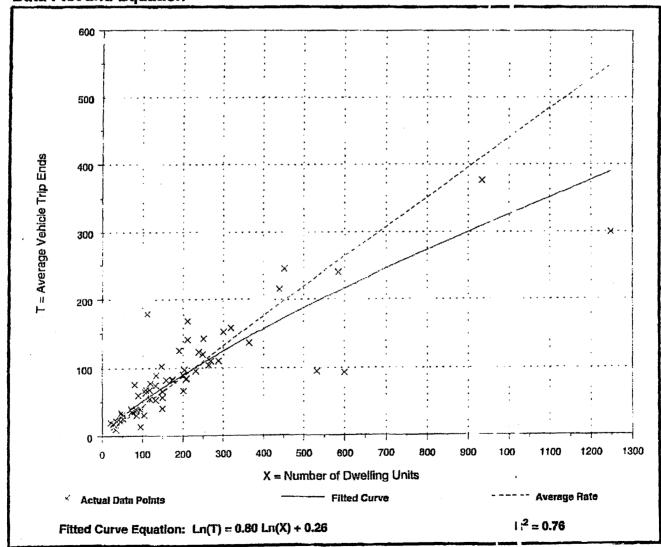
Data Plot and Equation

Residential Condominium/Townhouse (230)

Average Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.


Number of Studies: 59 Avg. Number of Dwelling Units: 213

Directional Distribution: 17% entering, 83% exiting

Trip Generation per Dwelling Unit

Average Rate	Range of Rates	St. ndard Deviation
0.44	0.15 - 1.61	0.69

Data Plot and Equation

Residential Condominium/Townhouse (230)

Average Vehicle Trip Ends vs: **Dwelling Units**

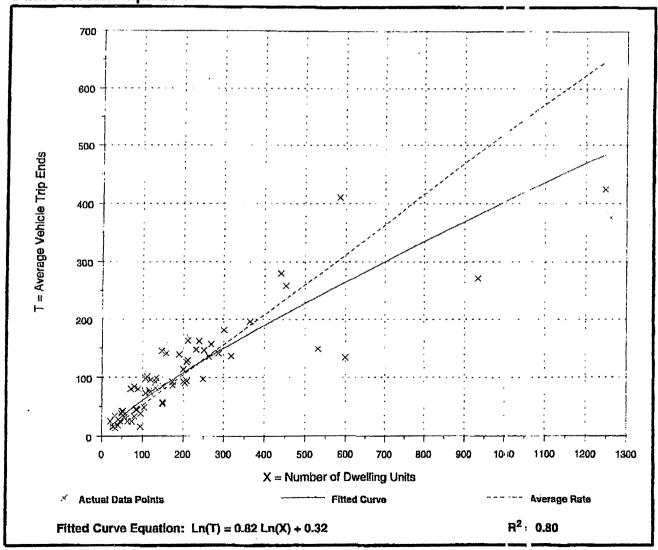
On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and € p.m.

Number of Studies:

62

Avg. Number of Dwelling Units:


205

Directional Distribution: 67% entering, 33% exitin;

Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Stanc ard Deviation		
0.52	0.18 - 1.24	0.75		

Data Plot and Equation

Transportation Engineering and Planning

ATTACHMENT 5 LEVEL OF SERVICE CRITERIA

Hajec Associates, Inc.

LOS

The average control delay per vehicle is estimated for each lane group and aggregated for each approach and for the intersection as a whole. LOS is directly related to the control delay value. The criteria are listed in Exhibit 16-2.

EXHIBIT 16-2. LOS CRITERIA FOR SIGNALIZED INTERSECTIONS

LOS Control Delay per Vehicle (s/ve²) A ≤ 10 B > 10–20 C > 20–35 D > 35–55 E > 55–80			
LOS A	Control Delay per Vehicle (s/veh)		
Α	≤ 10		
В	> 10–20		
С	> 20–35		
D	> 35–55		
E .	> 55–80		
F	> 80		

EXHIBIT 17-2. LEVEL-OF-SERVICE CRITERIA FOR TWSC INTERSECTIONS

Level of Service	Average Control Delay (s/veh)			
Α	0-10			
В	> 10–15			
C	> 15–25			
D	> 25–35			
Ę	> 35–50			
F	> 50			

Source: <u>Highway Capacity Manual 2000</u>

HAJEC ASSOCIATES

Transportation Engineering and Planning

Transportation Engineering and Planning

ATTACHMENT 6

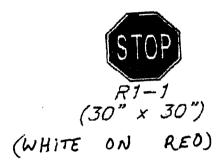
AASHTO STOPPING SIGHT DISTANCE STANDARDS

Hajec Associates, Inc.

Metric				US Customary					
	Brake	Braking	Stopping sigh	nt distance		Brake	Braking	Stopping sigt	nt distance
Design	reaction	distance			Design	reaction	distance		
speed	distance	on level	Calculated	Design	speed	distance	on level	Calculated	Design
(km/h)	(m)	(m)	(m)	(m)	(mph)	(ft)	(ft)	(ft)	(ft)
20	13.9	4.6	18.5	20	15	55.1	21.6	76.7	80
30	20.9	10.3	31.2	35	20	73.5	38.4	111.9	115
40	27.8	18.4	46.2	50	25	91.9	60.0	151.9	155
50	34.8	28.7	63.5	65	30	110.3	86.4	196.7	200
60	41.7	41.3	83.0	85	35	128.6	117.6	246.2	250
70	48.7	56.2	104.9	105	40	147.0	153.6	300.6	305
80	55.6	73.4	129.0	130	45	165.4	194.4	359.8	360
90	62.6	92.9	155.5	160	50	183. 8	240.0	423.8	425
100	69.5	114.7	184.2	185	55	202.1	290.3	492.4	495
110	76.5	138.8	215.3	220	60	220.5	345.5	566.0	570
120	83.4	165.2	248.6	250	65	238.9	405.5	644.4	645
130	90.4	193.8	284.2	285	70	257.3	470.3	727.6	730
1					75	275.6	539.9	815.5	820
				~ (O E ~ d~	80	294.0	614.3	908.3	910

Note: Brake reaction distance predicated on a time of 2.5 s; deceleration rate of 3.4 m/s² [11.2 ft/s²] used to determine calculated sight distance.

Exhibit 3-1. Stopping Sight Distance


Transportation Engineering and Planning

ATTACHMENT 7 RECOMMENDED SIGNS

Hajec Associates, Inc.

Transportation Engineering and Planning

SP-3 (36" x 36") (BLACK ON YELLOW)

Hajec Associates, Inc.